A Ternary Fuzzy Extractor For Efficient Cryptographic Key Generation

Posted : admin On 27.05.2020
A Ternary Fuzzy Extractor For Efficient Cryptographic Key GenerationA Ternary Fuzzy Extractor For Efficient Cryptographic Key Generation

A Ternary Fuzzy Extractor For Efficient Cryptographic Key Generation X

11 686 Fuzzy Bio-Cryptography Key Generation HanaaM. Corel videostudio pro x2 serial key generator. Salman Computer Science Department,University of Technology, Iraq Abstract:Strength of Cryptographic systems security depends mainly upon the security of the used key, which is leads to. Thunderbird generate a public key system.

A Ternary Fuzzy Extractor For Efficient Cryptographic Key Generation 3

  1. Fuzzy extractors are a method that allows biometric data to be used as inputs to standard cryptographic techniques for security. 'Fuzzy', in this context, refers to the fact that the fixed values required for cryptography will be extracted from values close to but not identical to the original key, without compromising the security required.
  2. Responses to generate secret keys using Fuzzy extractors. PHYSICALLY UNCLONABLE FUNCTIONS. Of PUFs to generate cryptographic keys from the responses is. A PUF-based key generation scheme based on using a ternary state key generation method to exclude fuzzy cells in the PUF.
  3. The ReRAM based PUFs are the most practical choice for authentication and key generation in IoT, as they operate at or below the systems' noise level and therefore are less vulnerable to side channel attacks compared to the alternative memory technologies.
  4. (2017) Cryptographic key generation from multimodal template using fuzzy extractor. 2017 Tenth International Conference on Contemporary Computing (IC3), 1-6. (2017) Securing Wireless Communications of the Internet of Things from the Physical Layer, An Overview.
  5. Fuzzy extractor structure using serially concatenated BCH-Polar codes is proposed to generate reproducible keys from a ReRAM-based ternary-state Physical Unclonable Functions (PUFs) for device authentication and secret key generation. The main concern in deploying PUF-based key generation methods is the leakage of information about.
  6. Fuzzy Extractors: How to Generate Strong Keys from Biometrics and Other Noisy Data by Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin and Adam Smith Abstract. We provide formal definitions and efficient secure techniques for turning noisy information into keys usable for any cryptographic application, and, in particular.

A Ternary Fuzzy Extractor For Efficient Cryptographic Key Generation 1

  1. Barker, E., & Kelsey, J. (2012). Recommendation for random number generation using deterministic random bit generators. NIST special publication 800-90A. http://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf.
  2. Berlekamp, E. (1965). On decoding binary Bose-Chadhuri-Hocquenghem codes. IEEE Transactions on Information Theory, 11(4), 577–579.MathSciNetCrossRefzbMATHGoogle Scholar
  3. Bogdanov, A., Knežević, M., Leander, G., Toz, D., Varici, K., & Verbauwhede, I. (2011). SPONGENT: a lightweight hash function. In Lecture notes in computer science (LNCS): Vol.6917. Workshop on cryptographic hardware and embedded systems—CHES 2011 (pp. 312–325). Berlin: Springer.CrossRefGoogle Scholar
  4. Bösch, C., Guajardo, J., Sadeghi, A.-R., Shokrollahi, J., & Tuyls, P. (2008). Efficient helper data key extractor on FPGAs. In Lecture notes in computer science (LNCS): Vol.5154. Workshop on cryptographic hardware and embedded systems—CHES 2008 (pp. 181–197). Berlin: Springer.CrossRefGoogle Scholar
  5. Burton, H. (1971). Inversionless decoding of binary BCH codes. IEEE Transactions on Information Theory, 17(4), 464–466.CrossRefzbMATHGoogle Scholar
  6. Carter, J. L., & Wegman, M. N. (1977). Universal classes of hash functions. In ACM symposium on theory of computing—STOC 1977 (pp. 106–112). New York: ACM.Google Scholar
  7. Chien, R. (1964). Cyclic decoding procedures for Bose-Chaudhuri-Hocquenghem codes. IEEE Transactions on Information Theory, 10(4), 357–363.MathSciNetCrossRefzbMATHGoogle Scholar
  8. Dodis, Y., Reyzin, L., & Smith, A. (2004). Fuzzy extractors: how to generate strong keys from biometrics and other noisy data. In Lecture notes in computer science (LNCS): Vol.3027. Advances in cryptology—EUROCRYPT 2004 (pp. 523–540). Berlin: Springer.CrossRefGoogle Scholar
  9. Dodis, Y., Ostrovsky, R., Reyzin, L., & Smith, A. (2008). Fuzzy extractors: how to generate strong keys from biometrics and other noisy data. SIAM Journal on Computing, 38(1), 97–139.MathSciNetCrossRefzbMATHGoogle Scholar
  10. Eastlake, D., Schiller, J., & Crocker, S. (2005). Randomness requirements for security. IETF RFC 4086. http://www.ietf.org/rfc/rfc4086.txt.
  11. Ferguson, N., & Schneier, B. (2003). Practical cryptography. New York: Wiley.Google Scholar
  12. Gallager, R. G. (1962). Low density parity-check codes. IRE Transactions on Information Theory, 8, 21–28.MathSciNetCrossRefzbMATHGoogle Scholar
  13. Guajardo, J., Kumar, S. S., Schrijen, G. J., & Tuyls, P. (2007). FPGA intrinsic PUFs and their use for IP protection. In Lecture notes in computer science (LNCS): Vol.4727. Workshop on cryptographic hardware and embedded systems—CHES 2007 (pp. 63–80). Berlin: Springer.CrossRefGoogle Scholar
  14. Gutmann, P. (2004). Cryptographic security architecture. Berlin: Springer.zbMATHGoogle Scholar
  15. Kelsey, J., Schneier, B., & Ferguson, N. (1999). Yarrow-160: notes on the design and analysis of the Yarrow cryptographic pseudorandom number generator. In Lecture notes in computer science (LNCS): Vol.1758. International workshop on selected areas in cryptography—SAC 1999 (pp. 13–33). Berlin: Springer.CrossRefGoogle Scholar
  16. Lenstra, A. K., Hughes, J. P., Augier, M., Bos, J. W., Kleinjung, T., & Wachter, C. (2012). Ron was wrong, Whit is right. Cryptology ePrint Archive, Report 2012/064.Google Scholar
  17. Linnartz, J.-P., & Tuyls, P. (2003). New shielding functions to enhance privacy and prevent misuse of biometric templates. In Lecture notes in computer science (LNCS): Vol.2688. International conference on audio- and video-based biometric person authentication—AVBPA 2003 (pp. 393–402). Berlin: Springer.CrossRefGoogle Scholar
  18. Maes, R., Tuyls, P., & Verbauwhede, I. (2009). Low-overhead implementation of a soft decision helper data algorithm for SRAM PUFs. In Lecture notes in computer science (LNCS): Vol.5747. Workshop on cryptographic hardware and embedded systems—CHES 2009 (pp. 332–347). Berlin: Springer.Google Scholar
  19. Maes, R., Tuyls, P., & Verbauwhede, I. (2009). Soft decision helper data algorithm for SRAM PUFs. In IEEE international symposium on information theory—ISIT 2009 (pp. 2101–2105). New York: IEEE.CrossRefGoogle Scholar
  20. Maes, R., Van Herrewege, A., & Verbauwhede, I. (2012). PUFKY: a fully functional PUF-based cryptographic key generator. In Lecture notes in computer science (LNCS): Vol.7428. Workshop on cryptographic hardware and embedded systems—CHES 2012. Berlin: Springer.Google Scholar
  21. Maiti, A., Casarona, J., McHale, L., & Schaumont, P. (2010). A large scale characterization of RO-PUF. In IEEE international symposium on hardware-oriented security and trust—HOST 2010 (pp. 94–99). New York: IEEE.CrossRefGoogle Scholar
  22. Massey, J. (1969). Shift-register synthesis and BCH decoding. IEEE Transactions on Information Theory, 15(1), 122–127.MathSciNetCrossRefzbMATHGoogle Scholar
  23. Nisan, N., & Zuckerman, D. (1996). Randomness is linear in space. Journal of Computer and System Sciences, 52(1), 43–52.MathSciNetCrossRefzbMATHGoogle Scholar
  24. Schnabl, G., & Bossert, M. (1995). Soft-decision decoding of Reed-Muller codes as generalized multiple concatenated codes. IEEE Transactions on Information Theory, 41(1), 304–308.CrossRefzbMATHGoogle Scholar
  25. Silverman, R., & Balser, M. (1954). Coding for constant-data-rate systems-part I. A new error-correcting code. Proceedings of the IRE, 42(9), 1428–1435.CrossRefGoogle Scholar
  26. Tarnovsky, C. (2010). Deconstructing a ‘Secure’ processor. Talk at Black Hat Federal 2010. http://www.blackhat.com/presentations/bh-dc-10/Tarnovsky_Chris/BlackHat-DC-2010-Tarnovsky-DASP-slides.pdf.
  27. Torrance, R., & James, D. (2009). The state-of-the-art in IC reverse engineering. In Lecture notes in computer science (LNCS): Vol.5747. Workshop on cryptographic hardware and embedded systems—CHES 2009 (pp. 363–381). Berlin: Springer.CrossRefGoogle Scholar
  28. Tuyls, P., & Batina, L. (2006). RFID-tags for anti-counterfeiting. In Lecture notes in computer science (LNCS): Vol.3860. Topics in cryptology: cryptographers’ track of the RSA conference—CT-RSA 2006 (pp. 115–131). Berlin: Springer.CrossRefGoogle Scholar
  29. Viterbi, A. (1967). Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Transactions on Information Theory, 13(2), 260–269.CrossRefzbMATHGoogle Scholar
  30. Yu, M.-D. M., M’Raihi, D., Sowell, R., & Devadas, S. (2011). Lightweight and secure PUF key storage using limits of machine learning. In Lecture notes in computer science (LNCS): Vol.6917. Workshop on cryptographic hardware and embedded systems—CHES 2011 (pp. 358–373). Berlin: Springer.CrossRefGoogle Scholar